Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Inform Med Unlocked ; 32: 101004, 2022.
Article in English | MEDLINE | ID: covidwho-1983243

ABSTRACT

The contagious SARS-CoV-2 has had a tremendous impact on the life and health of many communities. It was first rampant in early 2019 and so far, 539 million cases of COVID-19 have been reported worldwide. This is reminiscent of the 1918 influenza pandemic. However, we can detect the infected cases of COVID-19 by analysing either X-rays or CT, which are presumably considered the least expensive methods. In the existence of state-of-the-art convolutional neural networks (CNNs), which integrate image pre-processing techniques with fully connected layers, we can develop a sophisticated AI system contingent on various pre-trained models. Each pre-trained model we involved in our study assumed its role in extracting some specific features from different chest image datasets in many verified sources, such as (Mendeley, Kaggle, and GitHub). First, for CXR datasets associated with the CNN trained model from the beginning, whereby is comprised of four layers beginning with the Conv2D layer, which comprises 32 filters, followed by the MaxPooling and afterwards, we reiterated similarly. We used two techniques to avoid overgeneralization, the early stopping and the Dropout techniques. After all, the output was one neuron to classify both cases of 0 or 1, followed by a sigmoid function; in addition, we used the Adam optimizer owing to the more improved outcomes than what other optimizers conducted; ultimately, we referred to our findings by using a confusion matrix, classification report (Recall & Precision), sensitivity and specificity; in this approach, we achieved a classification accuracy of 96%. Our three integrated pre-trained models (VGG16, DenseNet201, and DenseNet121) yielded a remarkable test accuracy of 98.81%. Besides, our merged models (VGG16, DenseNet201) trained on CT images with the utmost effort; this model held an accurate test of 99.73% for binary classification with the (Normal/Covid-19) scenario. Comparing our results with related studies shows that our proposed models were superior to the previous CNN machine learning models in terms of various performance metrics. Our pre-trained model associated with the CT dataset achieved 100% of the F1score and the loss value was approximately 0.00268.

2.
Knowl Based Syst ; 253: 109539, 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-1966919

ABSTRACT

Alongside the currently used nasal swab testing, the COVID-19 pandemic situation would gain noticeable advantages from low-cost tests that are available at any-time, anywhere, at a large-scale, and with real time answers. A novel approach for COVID-19 assessment is adopted here, discriminating negative subjects versus positive or recovered subjects. The scope is to identify potential discriminating features, highlight mid and short-term effects of COVID on the voice and compare two custom algorithms. A pool of 310 subjects took part in the study; recordings were collected in a low-noise, controlled setting employing three different vocal tasks. Binary classifications followed, using two different custom algorithms. The first was based on the coupling of boosting and bagging, with an AdaBoost classifier using Random Forest learners. A feature selection process was employed for the training, identifying a subset of features acting as clinically relevant biomarkers. The other approach was centered on two custom CNN architectures applied to mel-Spectrograms, with a custom knowledge-based data augmentation. Performances, evaluated on an independent test set, were comparable: Adaboost and CNN differentiated COVID-19 positive from negative with accuracies of 100% and 95% respectively, and recovered from negative individuals with accuracies of 86.1% and 75% respectively. This study highlights the possibility to identify COVID-19 positive subjects, foreseeing a tool for on-site screening, while also considering recovered subjects and the effects of COVID-19 on the voice. The two proposed novel architectures allow for the identification of biomarkers and demonstrate the ongoing relevance of traditional ML versus deep learning in speech analysis.

3.
Comput Electr Eng ; 100: 107971, 2022 May.
Article in English | MEDLINE | ID: covidwho-1773226

ABSTRACT

The coronavirus pandemic has affected people all over the world and posed a great challenge to international health systems. To aid early detection of coronavirus disease-2019 (COVID-19), this study proposes a real-time detection system based on the Internet of Things framework. The system collects real-time data from users to determine potential coronavirus cases, analyses treatment responses for people who have been treated, and accurately collects and analyses the datasets. Artificial intelligence-based algorithms are an alternative decision-making solution to extract valuable information from clinical data. This study develops a deep learning optimisation system that can work with imbalanced datasets to improve the classification of patients. A synthetic minority oversampling technique is applied to solve the problem of imbalance, and a recursive feature elimination algorithm is used to determine the most effective features. After data balance and extraction of features, the data are split into training and testing sets for validating all models. The experimental predictive results indicate good stability and compatibility of the models with the data, providing maximum accuracy of 98% and precision of 97%. Finally, the developed models are demonstrated to handle data bias and achieve high classification accuracy for patients with COVID-19. The findings of this study may be useful for healthcare organisations to properly prioritise assets.

4.
Inf Sci (N Y) ; 592: 389-401, 2022 May.
Article in English | MEDLINE | ID: covidwho-1665023

ABSTRACT

Chest X-ray (CXR) imaging is a low-cost, easy-to-use imaging alternative that can be used to diagnose/screen pulmonary abnormalities due to infectious diseaseX: Covid-19, Pneumonia and Tuberculosis (TB). Not limited to binary decisions (with respect to healthy cases) that are reported in the state-of-the-art literature, we also consider non-healthy CXR screening using a lightweight deep neural network (DNN) with a reduced number of epochs and parameters. On three diverse publicly accessible and fully categorized datasets, for non-healthy versus healthy CXR screening, the proposed DNN produced the following accuracies: 99.87% on Covid-19 versus healthy, 99.55% on Pneumonia versus healthy, and 99.76% on TB versus healthy datasets. On the other hand, when considering non-healthy CXR screening, we received the following accuracies: 98.89% on Covid-19 versus Pneumonia, 98.99% on Covid-19 versus TB, and 100% on Pneumonia versus TB. To further precisely analyze how well the proposed DNN worked, we considered well-known DNNs such as ResNet50, ResNet152V2, MobileNetV2, and InceptionV3. Our results are comparable with the current state-of-the-art, and as the proposed CNN is light, it could potentially be used for mass screening in resource-constraint regions.

5.
Results Phys ; 27: 104495, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1525938

ABSTRACT

The first known case of Coronavirus disease 2019 (COVID-19) was identified in December 2019. It has spread worldwide, leading to an ongoing pandemic, imposed restrictions and costs to many countries. Predicting the number of new cases and deaths during this period can be a useful step in predicting the costs and facilities required in the future. The purpose of this study is to predict new cases and deaths rate one, three and seven-day ahead during the next 100 days. The motivation for predicting every n days (instead of just every day) is the investigation of the possibility of computational cost reduction and still achieving reasonable performance. Such a scenario may be encountered in real-time forecasting of time series. Six different deep learning methods are examined on the data adopted from the WHO website. Three methods are LSTM, Convolutional LSTM, and GRU. The bidirectional extension is then considered for each method to forecast the rate of new cases and new deaths in Australia and Iran countries. This study is novel as it carries out a comprehensive evaluation of the aforementioned three deep learning methods and their bidirectional extensions to perform prediction on COVID-19 new cases and new death rate time series. To the best of our knowledge, this is the first time that Bi-GRU and Bi-Conv-LSTM models are used for prediction on COVID-19 new cases and new deaths time series. The evaluation of the methods is presented in the form of graphs and Friedman statistical test. The results show that the bidirectional models have lower errors than other models. A several error evaluation metrics are presented to compare all models, and finally, the superiority of bidirectional methods is determined. This research could be useful for organisations working against COVID-19 and determining their long-term plans.

6.
Comput Methods Programs Biomed Update ; 1: 100025, 2021.
Article in English | MEDLINE | ID: covidwho-1330711

ABSTRACT

BACKGROUND: Since the onset of the COVID-19 pandemic, the world witnessed disruption on an unprecedented scale affecting our daily lives including but not limited to healthcare, business, education, and transportation. Deep Learning (DL) is a branch of Artificial intelligence (AI) applications, the recent growth of DL includes features that could be helpful in fighting the COVID-19 pandemic. Utilizing such features could support public health efforts. OBJECTIVE: Investigate the literature available in the use of DL technology to support dealing with the COVID-19 crisis. We summarize the literature that uses DL features to analyze datasets for the purpose of a quick COVID-19 detection. METHODS: This review follows PRISMA Extension for Scoping Reviews (PRISMA-ScR). We have scanned the most two commonly used databases (IEEE, ACM). Search terms were identified based on the target intervention (DL) and the target population (COVID-19). Two authors independently handled study selection and one author assigned for data extraction. A narrative approach is used to synthesize the extracted data. RESULTS: We retrieved 53 studies and after passing through PRISMA excluding criteria, only 17 studies are considered in this review. All studies used deep learning for detection of COVID-19 cases in early stage based on different diagnostic modalities. Convolutional Neural Network (CNN) and Transfer Learning (TL) were the most commonly used techniques. CONCLUSION: The included studies showed that DL techniques has significant impact on early detection of COVID-19 with high accuracy rate. However, most of the proposed methods are still in development and not tested in a clinical setting. Further investigation and collaboration are required from the research community and healthcare professionals in order to develop and standardize guidelines for use of DL in the healthcare domain.

7.
Comput Struct Biotechnol J ; 19: 2833-2850, 2021.
Article in English | MEDLINE | ID: covidwho-1240272

ABSTRACT

The worldwide health crisis caused by the SARS-Cov-2 virus has resulted in>3 million deaths so far. Improving early screening, diagnosis and prognosis of the disease are critical steps in assisting healthcare professionals to save lives during this pandemic. Since WHO declared the COVID-19 outbreak as a pandemic, several studies have been conducted using Artificial Intelligence techniques to optimize these steps on clinical settings in terms of quality, accuracy and most importantly time. The objective of this study is to conduct a systematic literature review on published and preprint reports of Artificial Intelligence models developed and validated for screening, diagnosis and prognosis of the coronavirus disease 2019. We included 101 studies, published from January 1st, 2020 to December 30th, 2020, that developed AI prediction models which can be applied in the clinical setting. We identified in total 14 models for screening, 38 diagnostic models for detecting COVID-19 and 50 prognostic models for predicting ICU need, ventilator need, mortality risk, severity assessment or hospital length stay. Moreover, 43 studies were based on medical imaging and 58 studies on the use of clinical parameters, laboratory results or demographic features. Several heterogeneous predictors derived from multimodal data were identified. Analysis of these multimodal data, captured from various sources, in terms of prominence for each category of the included studies, was performed. Finally, Risk of Bias (RoB) analysis was also conducted to examine the applicability of the included studies in the clinical setting and assist healthcare providers, guideline developers, and policymakers.

8.
Biomed Signal Process Control ; 68: 102583, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1163451

ABSTRACT

Due to the unforeseen turn of events, our world has undergone another global pandemic from a highly contagious novel coronavirus named COVID-19. The novel virus inflames the lungs similarly to Pneumonia, making it challenging to diagnose. Currently, the common standard to diagnose the virus's presence from an individual is using a molecular real-time Reverse-Transcription Polymerase Chain Reaction (rRT-PCR) test from fluids acquired through nasal swabs. Such a test is difficult to acquire in most underdeveloped countries with a few experts that can perform the test. As a substitute, the widely available Chest X-Ray (CXR) became an alternative to rule out the virus. However, such a method does not come easy as the virus still possesses unknown characteristics that even experienced radiologists and other medical experts find difficult to diagnose through CXRs. Several studies have recently used computer-aided methods to automate and improve such diagnosis of CXRs through Artificial Intelligence (AI) based on computer vision and Deep Convolutional Neural Networks (DCNN), which some require heavy processing costs and other tedious methods to produce. Therefore, this work proposed the Fused-DenseNet-Tiny, a lightweight DCNN model based on a densely connected neural network (DenseNet) truncated and concatenated. The model trained to learn CXR features based on transfer learning, partial layer freezing, and feature fusion. Upon evaluation, the proposed model achieved a remarkable 97.99 % accuracy, with only 1.2 million parameters and a shorter end-to-end structure. It has also shown better performance than some existing studies and other massive state-of-the-art models that diagnosed COVID-19 from CXRs.

9.
Intell Based Med ; 3: 100014, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-933120

ABSTRACT

PURPOSE: To investigate the diagnostic performance of an Artificial Intelligence (AI) system for detection of COVID-19 in chest radiographs (CXR), and compare results to those of physicians working alone, or with AI support. MATERIALS AND METHODS: An AI system was fine-tuned to discriminate confirmed COVID-19 pneumonia, from other viral and bacterial pneumonia and non-pneumonia patients and used to review 302 CXR images from adult patients retrospectively sourced from nine different databases. Fifty-four physicians blind to diagnosis, were invited to interpret images under identical conditions in a test set, and randomly assigned either to receive or not receive support from the AI system. Comparisons were then made between diagnostic performance of physicians working with and without AI support. AI system performance was evaluated using the area under the receiver operating characteristic (AUROC), and sensitivity and specificity of physician performance compared to that of the AI system. RESULTS: Discrimination by the AI system of COVID-19 pneumonia showed an AUROC curve of 0.96 in the validation and 0.83 in the external test set, respectively. The AI system outperformed physicians in the AUROC overall (70% increase in sensitivity and 1% increase in specificity, p < 0.0001). When working with AI support, physicians increased their diagnostic sensitivity from 47% to 61% (p < 0.001), although specificity decreased from 79% to 75% (p = 0.007). CONCLUSIONS: Our results suggest interpreting chest radiographs (CXR) supported by AI, increases physician diagnostic sensitivity for COVID-19 detection. This approach involving a human-machine partnership may help expedite triaging efforts and improve resource allocation in the current crisis.

10.
Chaos Solitons Fractals ; 140: 110212, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-720454

ABSTRACT

COVID-19, responsible of infecting billions of people and economy across the globe, requires detailed study of the trend it follows to develop adequate short-term prediction models for forecasting the number of future cases. In this perspective, it is possible to develop strategic planning in the public health system to avoid deaths as well as managing patients. In this paper, proposed forecast models comprising autoregressive integrated moving average (ARIMA), support vector regression (SVR), long shot term memory (LSTM), bidirectional long short term memory (Bi-LSTM) are assessed for time series prediction of confirmed cases, deaths and recoveries in ten major countries affected due to COVID-19. The performance of models is measured by mean absolute error, root mean square error and r2_score indices. In the majority of cases, Bi-LSTM model outperforms in terms of endorsed indices. Models ranking from good performance to the lowest in entire scenarios is Bi-LSTM, LSTM, GRU, SVR and ARIMA. Bi-LSTM generates lowest MAE and RMSE values of 0.0070 and 0.0077, respectively, for deaths in China. The best r2_score value is 0.9997 for recovered cases in China. On the basis of demonstrated robustness and enhanced prediction accuracy, Bi-LSTM can be exploited for pandemic prediction for better planning and management.

SELECTION OF CITATIONS
SEARCH DETAIL